Какие металлы окисляются

Какие металлы окисляются

Какие металлы окисляются, а какие покрываются патиной?

Патина и есть продукт окисления. Всё зависит от условий. Окисляются, конечно, только более активные металлы. И чем они активнее, тем быстрее окисляются в подходящих условиях (кислород воздуха, влага, углекислый газ). Например, платина и золото практически не окисляются, поэтому старинные золотые монеты, найденные в земле, не ржавеют («ржавчина» на золотых червонцах у Стерлиговаа — это брак Петербургского монетного двора: попадание промывочного масла). Высокопробное серебро устойчиво к кислороду, но в присутствии следов сероводорода чернеет. А низкопробное зеленеет — от содержащейся в нем меди. Что именно будет на металле, зависит от условий. Например, медь и медные сплавы могут покрыться красивым и прочным светло-коричневым слоем, защищающим предмет от коррозии. А могут покрыться некрасивым зеленым слоем основных карбонатов меди, портящих вид и статуи, и монеты. Достаточно сравнить две первые фотографии. Очень легко окисляются и разрушаются изделия из цинка и других активных металлов, как это видно на примере цинковой монеты.

Какие металлы ржавеют?

Ржавчина, обычно называемая окислением, возникает, когда железо или металлические сплавы, содержащие железо, такие как сталь, подвергаются воздействию кислорода и воды в течение длительного периода времени.

Ржавчина образуется, когда железо подвергается процессу окисления, но не все окисления образуют ржавчину. Как уже говорилось выше, ржаветь может только железо или сплавы, содержащие железо, но и другие металлы могут подвергаться коррозии аналогичным образом.

Что такое коррозия?

Коррозия возникает, когда элемент, легко теряющий свои электроны (например, некоторые металлы), соединяется с элементом, который поглощает дополнительные электроны (кислород), а затем вступает в контакт с раствором электролита (водой). Работа воды в процессе коррозии заключается в ускорении потока электронов от металла к кислороду.

Этот процесс называется окислительно -восстановительной реакцией и на самом деле представляет собой два химических процесса, которые происходят одновременно: восстановление (редукция) и окисление.

Что такое редукция?

Редукция – это название химической реакции, которая происходит, когда молекула получает электрон. Это роль кислорода в коррозии металлов.

Что такое окисление?

Окисление – это противоположная восстановлению реакция, которая происходит, когда молекула теряет электрон. Это роль воздействия металла в коррозии металла. Ржавчина и патина меди странного зеленого цвета – видимые результаты того, что металлы теряют свои электроны в воздухе.

Ржавеют ли медь, железо и алюминий?

Технически ржаветь может только железо и сплавы, содержащие железо. Другие металлы, включая драгоценные металлы, такие как золото и серебро, могут подвергаться аналогичной коррозии.

Что отличает определенные металлы, так это время, необходимое для того, чтобы они начали ржаветь или подвергаться коррозии.

Вот несколько примеров о том, как наиболее распространенные металлы противостоят ржавчине и коррозии.

В ассортименте нашей компании есть эффективный удалитель ржавчины с металлов «РжавоМед-У»

Ржавеет ли медь?

Медь не ржавеет, однако, корродирует. Медь имеет естественный коричневый цвет и при коррозии приобретает ярко-зеленый оттенок. Хотя некоторые считают, что реакция меди скорее потускнение, чем окисление, металл по-прежнему подвергается аналогичному процессу «ржавления».

В естественной среде медь крайне несклонна к коррозии. Тип коррозии, которая в конечном итоге приводит к поломке медных питьевых труб, называется эрозионной коррозией, и она возникает только из-за воздействия текущей турбулентной воды в течение длительного периода времени. Обычно видимая на старых монетах знаменитая красивая зеленая «патина» может полностью сформироваться за 20 лет.

Это один из немногих природных металлов, который не добывается из руды (хотя он может быть получен другими способами), пригодный для непосредственного использования в естественной среде. Этот, а также тот факт, что медь очень мягкая и с ней легко работать, повлекли за собой то, что медь стала одним из первых металлов, с которыми работали люди в истории человечества.

Фактически, медь имела такое большое значение, что у нас действительно есть период в истории, называемый медным веком.

Медь обладает высокой проводимостью к теплу и электричеству, поэтому ее часто используют в электропроводке.

Медь также имеет очень низкую реакционную способность. Известный инструмент в химии, который представляет собой последовательность металлов, упорядоченную от самой высокой до самой низкой реакционной способности до кислот, воды, извлечения металлов из их руд и других реакций. Из-за её низкой реакционной способности специальный сплав меди (90% меди и 10% никеля) используется для деталей лодок, которые в дальнейшем подвергаются воздействию морской воды, или в качестве труб для транспортировки питьевой воды. Если вы осмотритесь в своем доме или здании, то заметите, что во многих ваших приборах используются медные трубы для подачи и отвода воды.

По данным Министерства жилищного строительства и городского развития России, средний срок службы медной водопроводной трубы составляет 50-70 лет.

Ржавеет ли железо?

Да. Помните, что технически ржаветь может только железо и сплавы, содержащие железо.

Читать статью  Платина — королева благородных металлов

По сравнению с коррозией других металлов, железо относительно быстро ржавеет, особенно если оно подвергается воздействию воды и кислорода. Фактически, когда железо подвергается воздействию воды и кислорода, оно может начать ржаветь в течение нескольких часов.

Железо также быстро ржавеет при воздействии высоких температур. Экстремальные температуры могут изменить химический состав металла, что делает его чрезвычайно склонным к рекомбинации с кислородом в окружающей среде.

Алюминий производится в 3 этапа:

Этап 1. Добыча полезных ископаемых

Этап 2. Обработка

Этап 3. Электролитическое восстановление (при котором образуется сам алюминий)

Алюминий получают из минерала боксита. Бокситы чаще всего встречаются в субтропических местах, таких как Африка, Западная Индия, Южная Америка и Австралия, хотя есть небольшие месторождения и в других местах, например, в Европе. Австралия является крупнейшим производителем бокситов. На его долю приходится около 23% мировой добычи.

Затем этот боксит перерабатывается в оксид алюминия, который состоит только из атомов алюминия и кислорода, связанных вместе.

Затем через оксид алюминия пропускается электрический ток, который отделяет различные компоненты друг от друга. Пузырьки кислорода образуются на одном конце, а капли чистого расплавленного алюминия собираются на другом.

Около 4-5 тонн боксита перерабатывается в 2 тонны оксида алюминия, что дает 1 тонну чистого алюминия.

Алюминий корродирует намного медленнее, чем другие металлы, такие как железо. Причина того, что алюминий не так легко подвергается коррозии, как другие металлы, заключается в его особой реакции с водой.

Обычно, когда вода вступает в контакт с металлом, она побуждает металл еще быстрее отдавать свои электроны окружающему его кислороду.

Однако у алюминия особая реакция на воду. Когда вода соприкасается с алюминием, атомы алюминия и кислорода (содержащиеся в металле, а не кислород в окружающем его воздухе) перемещаются дальше друг от друга.

Они окажутся почти на 50% дальше друг от друга, чем были в начале. Эта реакция удаления меняет молекулярную структуру алюминия настолько, что он становится химически инертным, а это означает, что он не так легко подвергается коррозии.

Как предотвратить ржавление металлов

Ржавчина – это естественная химическая реакция. Несмотря на то, что некоторые металлы ржавеют быстрее других, это не должно вас сдерживать от использования этих металлов для определенных целей. Есть много способов предотвратить ржавчину металлов, например, металлические краски и покрытия, защитные барьеры, барьерные пленки, а также многочисленные антикоррозионные растворы и лужение. В каждом методе используются разные соединения и материалы для создания защитного барьера между металлом и элементами, вызывающими ржавчину и коррозию.

В ассортименте нашей компании есть эффективный удалитель ржавчины с металлов «РжавоМед-У»

Химические свойства металлов

Характерным химическим свойством металлов является их восстановительная активность, т.е. способность переходить в состояние положительно заряженного иона, теряя при этом электроны:

Количественно восстановительная активность металлов определяется: величиной Еи атома металла (для реакций, протекающих в газовой фазе); величиной стандартного электродного потенциала металла j°iCn/мс (для реакций, протекающих в растворах). При этом следует иметь в виду тот факт, что величина j? Ме п+/ Me изменяется в зависимости от условий процесса, т.к. образовавшиеся ионыМе п+ могут участвовать в процессе комплексообразования.

Восстановительная активность металлов проявляется при взаимодействии их с окислителями.

Отношение металлов к окислителям — простым веществам

Металлы чаще всего реагируют со следующими окислителями — простыми веществами: кислородом, галогенами, серой, азотом, водородом.

Отношение металлов к кислороду.

Большинство металлов окисляется кислородом воздуха, но при различных условиях:

По отношению к кислороду все металлы принято подразделять на 4 группы:

Металлы, активно окисляющиеся кислородом воздуха при обычных условиях. К ним относят: элементы 1А, ПА (кроме бериллий, магний), ШБ (кроме скандия) групп. При взаимодействии указанных металлов с кислородом могут образовываться различные продукты:

Z N ci + U — N cV2 О 2

пероксид натрия — Ѕ

Металлы, окисляющиеся только с поверхности (с образованием плотной оксидной пленки, предохраняющей металл от дальнейшего окисления). К этой группе металлов относят берилий, магний, скандий, алюминий, цинк, хром, свинец. Например, при окислении алюминия образуется оксидная пленка толщиной менее 30 нм, которая защищает металл от дальнейшего окисления.

Металлы, не окисляющиеся при обычных условиях кислородом воздуха (кобальт, никель медь, теллур, рений, висмут и др.) окисляются при нагревании. Поверхностный слой (преимущественно оксидного характера) при этом металл не защищает.

Металлы, для которых устойчивы высшие степени окисления, в частности, элементы У1Б-группы, окисляются с образованием высших оксидов.

Металлы не окисляющиеся кислородом в отсутствие других реагентов: золото, серебро, палладий, иридий, платина. Для оксидов этих металлов величина D) G° (298 К) > 0, следовательно, образующиеся оксиды этих металлов должны распадаться в момент образования.

В некоторых случаях металлы, не взаимодействующие с кислородом, окисляются им в присутствии других соединений. Например, молекулы аммиака, способствующие комплексообразованию, облегчают процесс окисления меди кислородом.

Медные изделия на воздухе покрываются зеленоватым налетом — патиной, состоящей преимущественно из основного карбоната меди.

Читать статью  Свинец тяжелый или легкий металл

Серебряные предметы на воздухе темнеют из-за образования на поверхности металла сульфида серебра.

Медь, серебро и золото растворяются в цианидах (в присутствии кислорода).

Аллотропная модификация кислорода — озон (02) также является достаточно сильным окислителем, взаимодействующим даже с малоактивными металлами.

Отношение металлов к галогенам.

Практически все металлы при нагревании окисляются галогенами (F2, СЬ, Вг2,12) с образованием соответствующих галидов (при обычных условиях с галогенами взаимодействуют только элементы 1А-группы).

Большинство металлов взаимодействуют с галогенами при нагревании.

Отношение металлов к сере.

Ртуть с серой взаимодействует при стандартных условиях.

Все остальные металлы (за исключением золота, платины, палладия) взаимодействуют с серой при нагревании.

Отношение металлов к азоту.

При обычных условиях с азотом взаимодействует только литий. Натрий, калий, рубидий, цезий — взаимодействуют с азотом в электрическом разряде. Алюминий, марганец, магний, а также элементы ШБ, IVB, VB, VIB — групп взаимодействуют с азотом при нагревании.

Не взаимодействуют с азотом элементы IB, ПБ, VIПБ — групп, а также — олово, свинец, висмут, технеций, рений.

Отношение металлов к водороду.

При нагревании с водородом взаимодействуют металлы 1А и ПА — групп. Окислителем в данных реакциях является водород.

С остальными металлами водород непосредственно не реагирует, но образует со многими из них твердые растворы. Это приводит к повышению хрупкости и снижению пластичности металла.

Способность некоторых металлов (алюминий, элементы УБ, VIB, УШБ — групп) поглощать (адсорбировать) своей поверхностью значительные объемы водорода широко используют в катализе. Так, один объем палладия при 80°С может поглотить до 900 объемов водорода, что позволяет использовать его (как и некоторые другие металлы, например, никель) в качестве катализатора в реакциях гидрирования (восстановления водородом).

Отношение металлов к окислителям — сложным веществам.

В качестве окислителей сложного состава, с которыми чаще всего контактируют металлы, обычно рассматривают воду, водные растворы щелочей и кислот.

По химической активности в водных средах все металлы условно делят на: активные — стоящие в ряду напряжений от лития по алюминий (включительно), средней активности — стоящие в ряду напряжений от алюминия до водорода, малоактивные — стоящие в ряду напряжений после водорода.

Следует отметить, что восстановительная активность металлов может существенно изменяться в зависимости от условий протекания реакции. В частности, при комплексообразовании величина электродного потенциала металла значительно уменьшается.

Аналогичный характер изменения величины электродного потенциала металла наблюдают, если в процессе реакции образуются малорастворимые соединения.

Отношение металлов к воде.

В реакциях данного типа роль окислителя играют ионы водорода, образующиеся при диссоциации молекул воды. При pH = 7 jAm m = «0.41 В, следовательно, с водой теоретически могут реагировать все металлы, имеющие величину j° меньше — 0,41 В. Реально же наблюдается следующее:

а) активные металлы интенсивно взаимодействуют с водой, вытесняя при этом водород.

Аналогичная реакция с магнием протекает при нагревании, исключения составляют: — берилий, алюминий и скандий, поверхность которых покрыта прочными оксидными пленками, нерастворимыми в воде; магний, образующийся гидроксид которого — Mg (OH) 2, малорастворим;

б) металлы средней активности при стандартных условиях с водой практически не реагируют, т.к. они или покрыты оксидными пленками, или образуют труднорастворимые гидроксиды (хром, никель, цинк) на поверхности металлов. Данные металлы могут разлагать воду при достаточно высоких температурах (до 1000°С).

в) малоактивные металлы с водой при обычных условиях не взаимодействуют, поскольку величина их стандартного электродного потенциала значительно больше потенциала окислителя (-0,41 В) и термодинамически данная реакция невозможна.

Отношение металлов к водным растворам щелочей.

С водными растворами щелочей взаимодействуют металлы, расположенные в ряду напряжений до водорода и образующие амфотерные гидроксиды: берилий, алюминий, цинк, хром, олово, свинец. Взаимодействие часто обусловлено сдвигом величины электродного потенциала металла в сторону отрицательных значений за счет процесса образования гидроксокомплексов. Тем не менее, данный процесс возможен. Его можно представить в виде двух более простых:

1) взаимодействие металла с водой.

2) растворение образующегося амфотерного гидроксида в избытке щелочи с образованием гидроксокомплекса.

Отношение металлов к кислотам.

По окислительной активности кислоты условно делят на 2 группы:

1) кислоты — слабые окислители. В растворах этих кислот окислителем является ион водорода.

2) кислоты — сильные окислители. Окислителями в растворах этих кислот являются кислородсодержащие анионы.

Отношение металлов к кислотам — слабым окислителям.

Величина стандартного электродного потенциала окислителя (Н+) при pH = 0 равна j°2ii+л 12 = О В. Следовательно, металлы, стоящие в ряду напряжений до водорода (j°MCn — мс < 0), должны вытеснять его из растворов этих кислот. Исключение составляют металлы, которые при взаимодействии с данными кислотами образуют труднорастворимые соединения.

Некоторые малоактивные металлы, не взаимодействующие с разбавленными растворами кислот — слабых окислителей, взаимодействуют с концентрированными растворами этих же кислот. В частности, медь не взаимодействует с разбавленными растворами соляной кислоты, но растворяется в ее концентрированных растворах за счет процесса комплексообразования.

Ряд металлов, для которых характерны устойчивые соединения в высшей степени окисления образуют анионные комплексы.

Читать статью  Общая характеристика металлов IА–IIIА групп

Отношение металлов к кислотам — сильным окислителям.

а). Отношение металлов к концентрированной серной кислоте.

Окислителем в концентрированных растворах серной кислоты является сера в ионах HSCV, SO4 2 ‘. В зависимости от активности металла он может восстанавливаться до H2S, S или до S02. Кроме этих соединений, во всех трех случаях основными продуктами реакции также являются соответствующая соль (сульфат или гидросульфат) и вода.

Некоторые металлы взаимодействуют с концентрированными и разбавленными растворами серной кислоты неодинаково. Так, олово с разбавленной серной кислотой образует соль катионного типа, повышая свою степень окисления до (+2), а с концентрированной серной кислотой образует соль, в которой олово находится в высшей степени окисления (+4).

В концентрированных растворах серной кислоты пассивируются на холоду алюминий, хром, железо, кобальт, никель, титан, цирконий, гафний, молибден, вольфрам и др.

Не взаимодействуют с серной кислотой: платина, золото, рутений, родий, иридий, и др.

б). Отношение металлов к разбавленной азотной кислоте.

Окислителем в растворах азотной кислоты является нитрат-ион: N0/.

Как и в предыдущем случае, состав основных продуктов реакции определяется активностью металла, участвующего во взаимодействии.

Пассивация — торможение (или полное прекращение) химического процесса за счет продуктов взаимодействия (образование труднорастворимых оксидных, гидроксидных, солевых и иных пленок на поверхности металла). Пассивируются в разбавленных растворах азотной кислоты (на холоду) алюминий, молибден, вольфрам и др. Не взаимодействуют: платина, золото, рутений, родий, иридий.

в). Отношение металлов к концентрированной азотной кислоте.

В отличие от взаимодействия металлов с разбавленной HN03 в данном случае состав продуктов реакции менее разнообразен. В большинстве случаев нитрат-ион восстанавливается до N02. Часто процесс протекает при нагревании. Ряд элементов, имеющих высокие (+4 и более) степени окисления при взаимодействии с концентрированной азотной кислотой образует гидроксиды (оксиды) в данной степени окисления.

Пассивируются в концентрированных растворах азотной кислоты (на холоду) бериллий, алюминий, хром, железо, кобальт, никель, титан, цирконий, гафний, свинец, висмут но при нагревании ряд металлов начинает активно взаимодействовать с азотной кислотой. Не взаимодействуют: платина, золото, иридий, рутений, родий, ниобий, тантал.

г). Отношение металлов к смесям кислот.

Ряд малоактивных металлов (золото, рутений, смий) не растворяется (или очень плохо) в перечисленных выше кислотах — сильных окислителях. Однако, в смесях кислот, в частности, HN03 + ЗНС1 («царская водка”) эти металлы растворяются. Вместо соляной кислоты при растворении ряда металлов предпочтительнее использовать HF (плавиковая кислота).

Отношение металлов к смесям окислителей.

Для решения ряда технологических вопросов, связанных с получением или обработкой некоторых металлов, иногда приходится использовать в качестве окислителей различные смеси сложных веществ. Можно привести процессы окисления ряда металлов в щелочной среде:

Окисление металлов

окисление металлов — Процесс взаимодействия твердого или жидкого металла (сплава) с кислородом, сопровождаемый образованием оксидов. В более широком смысле окисление металлов — реакции, в которых атомы теряют электроны и образуют соединения, например, хлориды,… … Справочник технического переводчика

Окисление металлов — [oxydation of metals] процесс взаимодействия твердого или жидкого металла (сплава) с кислородом, сопровождающий образование оксидов. В более широком смысле окисление металлов реакции, в которых атомы теряют электроны и образуются соединения,… … Энциклопедический словарь по металлургии

ОКИСЛЕНИЕ МЕТАЛЛОВ — [oxydation of metals] процесс взаимодействия твердого или жидкого металла (сплава) с кислородом, сопровождаемый образованием оксидов. В более широком смысле окисление металлов реакции, в которых атомы теряют электроны и образуют соединения,… … Металлургический словарь

окисление металлов — ▲ окисление ↑ металл ↓ патина. патинировать. позеленеть. окалина. | оксидирование … Идеографический словарь русского языка

Окисление — восстановление — Окисление восстановление, окислительно восстановительные реакции, химические реакции, сопровождающиеся изменением окислительных чисел атомов. Первоначально (со времени введения в химию кислородной теории горения А. Лавуазье, конец 18 в.)… … Большая советская энциклопедия

Окисление-восстановление — окислительно восстановительные реакции, химические реакции, сопровождающиеся изменением окислительных чисел (См. Окислительное число) атомов. Первоначально (со времени введения в химию кислородной теории горения А. Лавуазье, конец 18 в.)… … Большая советская энциклопедия

МЕТАЛЛОВ ОКИСЛЕНИЕ — подразделяется на химическое и электрохимическое. Для хим. окисления используют обычно газообразные реагенты, для электрохим. водные р ры. М. о. газообразными реагентами протекает при газовой коррозии, получении оксидов или галогенидов металлов… … Химическая энциклопедия

окисление-восстановление — [redox] химические реакции, сопровождаемые изменением окислительных чисел атомов. Согласно кислородной теории горения А. Лавуазье (кон. XVIII в.) окисление называл только реакции соединения с кислородом, восстановлением отнятие кислорода. С… … Энциклопедический словарь по металлургии

окисление-восстановление — Химические реакции, сопровождающиеся изменением окислительных чисел атомов. Согласно кислородной теории горения А. Лавуазье (кон. XVIII в.) окислением называются только реакции соединения с кислородом, восстановлением — отнятие кислорода. С … Справочник технического переводчика

Окисление — – процесс образования окислов металлов. [Блюм Э. Э. Словарь основных металловедческих терминов. Екатеринбург, 2002 г.] Рубрика термина: Общие термины Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги … Энциклопедия терминов, определений и пояснений строительных материалов

Похожие публикации:

  1. Для чего заземляют оборудование
  2. Как подключить антенный разветвитель на 2 телевизора
  3. Что такое раскаты грома
  4. Как сделать зеркало с подсветкой для макияжа своими руками птжтапрт

Источник https://vijvarada.volyn.ua/instrukcija/128/kakie-metally-okisljajutsja

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *